Quando un computer trae dall’analisi dei dati che gli diamo in pasto la capacità di classificarli, interpretarli o, addirittura, di prevedere altri dati, alle relative procedure si usa dare il nome di machine learning.
Nel manualetto “python_data_science” allegato al mio articolo “Python per la data science” pubblicato su questo blog nel dicembre 2021, ho presentato, ad uso di dilettanti principianti, alcuni moduli del linguaggio di programmazione Python concepiti per fare queste cose.
Le esemplificazioni che ho portato in quel manualetto riguardano processi di apprendimento abbastanza semplici, per lo più attinenti dati numerici collocati in piccoli dataset o brevi testi, in modo che le relative sperimentazioni siano eseguibili su computer di potenza media.
Lo scorso mese di maggio, in un altro manualetto intitolato “google_colab”, allegato al mio articolo “Se il nostro computer non ce la fa”, ho presentato la possibilità di trasferire queste sperimentazioni su un servizio di cloud computing di Google, che si chiama Google Colaboratory.
Il vantaggio è innanzi tutto quello di poter lavorare su masse di dati più voluminose, ma questo è il vantaggio più banale.
Il vero vantaggio è quello di poter lavorare su dati non solo numerici o di testo ma anche di suono o grafici e con metodologie e potenze di calcolo adatte a questo tipo di dati.
Metodologie che sostituiscono all’algebra lineare l’algebra tensoriale e attraverso le quali si compiono analisi con procedimenti che imitano il funzionamento del cervello umano e che richiedono al computer capacità elaborativa non più da computer di bassa o media potenza.
A tutto ciò si dà il nome di deep learning.
Pur avendo a che fare con una materia che esula dalle capacità e forse anche dall’interesse dei dilettanti cui mi rivolgo, faccio un tentativo di divulgazione con l’allegato manualetto, anche finalizzato a far conoscere fin dove arriva il software libero.